

HUB Web Service API
IPPC ePhyto HUB

v1.19

Public - FAO/IPPC

HUB Web Service API

Public - FAO/IPPC 2 01-Sep-2023

Table of Contents

DOCUMENT PROFILE .. 3

REVISION HISTORY ... 3

DISTRIBUTION .. 4

DOCUMENT ROADMAP ... 4

1. INTRODUCTION .. 4

1.1 Purpose .. 4
1.2 Intended Audience and Reading Suggestions ... 4
1.3 References.. 4

2. HUB INFORMATION ... 4

3. TECHNICAL SUPPORT .. 4

4. HUB WEB SERVICE SYSTEMS ... 5

4.1 Testing Environment (UAT) ... 5
4.1.1 URL for Testing.. 5
4.1.2 Certificates for Web Service client authentication ... 5

4.2 Production Environment .. 7
4.3 Profile Configuration ... 7

4.4 Authentication ... 9

5. HUB XML SCHEMAS .. 9

5.1 Schema ... 9
5.1.1 Envelope Header ... 10
5.1.2 Envelope Content .. 11

5.1.3 Array of EnvelopeHeader ... 12
5.1.4 Array of Envelope.. 12

6. OPERATIONS .. 12

6.1 Connect to the hub .. 12
6.2 DeliverEnvelope .. 13

6.3 PULLImportEnvelope, AcknowledgeEnvelopeReceipt,

AdvancedAcknowledgeEnvelopeReceipt, AcknowledgeFailedEnvelopeReceipt 17
6.4 GetUnderDeliveryEnvelope .. 19
6.5 GetImportEnvelopeHeaders & PULLSingleImportEnvelope 20
6.6 GetEnvelopeTrackingInfo ... 23
6.7 GetActiveNppos ... 24

6.8 ValidatePhytoXML ... 25
6.9 DeliverPhytoEnvelope .. 26
6.10 DeliverCountryResponseEnvelope .. 26
6.11 GetAvailableChannels ... 26
6.12 DeliverEnvelope (with channel forwarding) .. 26
6.13 ValidateAndDeliverEnvelope ... 27
6.14 GetProfile ... 27

6.15 Receiving a PUSH delivery .. 28

HUB Web Service API

Public - FAO/IPPC 3 01-Sep-2023

7. SEQUENCE DIAGRAMS ... 33

7.1 Deliver with PULL ... 33
7.2 Deliver with PUSH ... 34

8. TESTING WITH SOAP UI ... 35

Document Profile

Author:

UNICC

Owner:

UNICC

Client:

FAO/IPPC

Document Number:

1.18

Revision History

Version: Who: What: When:

1.0 UNICC Primary Document 12/12/2016

1.1 UNICC Revision after PTC meeting in Geneva 22/03/2017

1.2 UNICC Iteration 2 Review 31/07/2017

1.3 UNICC Iteration 3 review 11/09/2017

1.4 UNICC Revision after PTC meeting in Valencia 03/10/2017

1.5 UNICC Java client sample code added 24/10/2017

1.6 UNICC Receiving through PUSH Sample
implementation added

16/11/2017

1.7 UNICC Reviewed HUB Admin console urls 04/01/2018

1.8 UNICC Updates of the March 2018 Release 22/03/2018

1.9 UNICC Updates of the April 2018 Release 07-May-2018

1.10 UNICC Review of external links 01-Jun-2018

1.11 UNICC July 18 release 16-July-2018

1.12 UNICC Oct 18 release 9-Nov-2018

1.13 UNICC Jan-2019 release 28-Jan-2019

1.14 UNICC Q1-2020 release (Channel
implementation)

27-Apr-2020

1.15 UNICC Q2-2020 release 06-Aug-2020

1.16 UNICC Q3-2020 release 12-Oct-2020

1.17 UNICC June 2021 release, Country Response
(SPSAcknowledgement)

10-Jun-2021

1.18 UNICC Apr 2022, revision of client certificates
provisioning

11-Apr-2022

HUB Web Service API

Public - FAO/IPPC 4 01-Sep-2023

1.19 UNICC Review and integration of validation in
the sequence diagrams.

Several improvements

1-Sep-2023

Distribution
This document is published and distributed as part of the HUB release communication and

hosted under the ePhyto Solution landing page.

Document Roadmap
Following is the planned enhancements to this document

Feature

1. Introduction

1.1 Purpose

This document describes the IPPC HUB Web Service. It should be used as a guideline to implement

the required client software components needed to connect to the HUB.

1.2 Intended Audience and Reading Suggestions

The audience for this document is for developers and system architects who will evaluate and

release the components for connecting to the HUB. It will also be used for developing and

maintaining the interface between the IPPC HUB and the IPPC Generic National System (GeNS).

1.3 References

- ePhyto HUB Software Requirements Specification

- https://www.ippc.int/en/ephyto/

- https://www.ippc.int/en/ephyto/ephyto-technical-information/

- ePhyto HUB Software Requirements Specification

2. HUB Information
Documentation and guides on how to join the HUB are available in the ePhyto Solutions landing site.

¶ HUB Guide to joining:

https://www.ephytoexchange.org/landing/hub/index.html#guide

¶ HUB Technical Documentation:

https://www.ephytoexchange.org/landing/hub/index.html#documentation

3. Technical Support

For general queries on the HUB please go to https://www.ephytoexchange.org/support

https://www.ephytoexchange.org/landing/hub/index.html#documentation
https://www.ephytoexchange.org/doc/HUB_Requirements.pdf
https://www.ippc.int/en/ephyto/
https://www.ippc.int/en/ephyto/ephyto-technical-information/
https://www.ephytoexchange.org/doc/HUB_Requirements.pdf
https://www.ephytoexchange.org/landing/hub/index.html#guide
https://www.ephytoexchange.org/landing/hub/index.html#documentation
https://www.ephytoexchange.org/support

HUB Web Service API

Public - FAO/IPPC 5 01-Sep-2023

We also encourage using the collaboration tool to get quick answers and share experiences. (Registered

users only)

If you encounter issues while testing the implementation of the components needed to connect to the

HUB you can raise a technical support request from within the Administration Console

(https://www.ephytoexchange.org/AdminConsole) following the link available in the menu after the

successful login.

The system will send a mail to the technical team that will respond to the query.

We suggest looking first at the collaboration area of the admin console as a possible source of

information.

4. HUB Web Service Systems

4.1 Testing Environment (UAT)

The testing environment (UAT) is a live system with the latest release of the system that is constantly

available to test the implementation of the client application connection to the HUB.

Self-Signed certificates and ad-hoc credentials can be provided in order to facilitate the activities.

4.1.1 URL for Testing

HUB UAT/Test environment can be accessed from the following URLs:

https://uat -hub.ephytoexchange.org/hub/DeliveryService?wsdl (complete web service

with specialized ePhyto operations)

https://uat -hub.ephytoexchange.org/hub/DeliveryServiceLight?wsdl (light version of

the web service, without specialized references to ePhyto data structures)

The WSDL resource is public, any client certificate installed in the browser and/or no certificate

selected will allow to navigate the resource. The use of the web service operations will require a valid

client certificate as explained in the following chapters.

https://uat -hub.ephytoexchange.org/AdminConsole (Admin interface)

Log-in credentials to the console are provided during the process of the on-boarding.

4.1.2 Certificates for Web Service client authentication

During the testing phase, web services client authentication will use self-signed certificates.

Connecting entities ÃÁÎ ÉÓÓÕÅ ÔÈÅÉÒ ÃÅÒÔÉÆÉÃÁÔÅÓ ×ÉÔÈ ÔÈÅ ȰËÅÙÔÏÏÌȱ ÃÏÍÍÁÎÄ ÆÏÕÎÄ ÉÎ ÔÈÅ *ÁÖÁ

Development Kit (JDK) or they can request that the HUB Administrators (UNICC) provide a test

certificate that they can use.

The administrator can access the HUB Admin Console and update the public certificate(s) that

will be used to authenticate the client application when using the web services.

4.1.2.1 Generating a self-signed test certificate

https://www.ephytoexchange.org/AdminConsole
https://uat-hub.ephytoexchange.org/hub/DeliveryService?wsdl
https://uat-hub.ephytoexchange.org/hub/DeliveryServiceLight?wsdl
https://uat-hub.ephytoexchange.org/AdminConsole

HUB Web Service API

Public - FAO/IPPC 6 01-Sep-2023

#ÅÒÔÉÆÉÃÁÔÅÓ ÃÁÎ ÂÅ ÇÅÎÅÒÁÔÅÄ ×ÉÔÈ ÔÈÅ ȰËÅÙÔÏÏÌȱ ÃÏÍÍÁÎÄ ÐÒÏÖÉÄÅÄ ÂÙ ÔÈÅ *$+Ȣ

Example of certificate generation for a NPPO entity located in London, UK with a validity of 10

years:

C:\ certificates>keytool -genkey -alias nppo1 -keyalg RSA -keysize 2048 -keystore nppo.keystore -validity

3650 -keypass nppo1pass -storepass nppoStore1pass

What is your first and last name?

 [Unknown]: www.nppo.mycountry

What is the name of your organizational unit?

 [Unknown]: NPPO

What is the name of your organization?

 [Unknown]: NPPO-MyCountry

What is the name of your City or Locality?

 [Unknown]: Capital

What is the name of your State or Province?

 [Unknown]:

What is the two-letter country code for this unit?

 [Unknown]: MC

Is CN=www.nppo.mycountry, OU=NPPO, O=NPPO-MyCountry, L=Capital, ST=Unknown, C=MC correct?

 [no]: yes

Note that the above key parameters and ÁÎÓ×ÅÒÓ ÁÒÅ ÔÏ ÂÅ ÒÅÐÌÁÃÅÄ ÂÙ ÔÈÅ ÃÏÕÎÔÒÙȭÓ ÒÅÌÅÖÁÎÔ

information.

Example of public key export from the key store:

C:\ certificates>keytool -export -keystore nppo.keystore -alias nppo1 -file nppo1.cer -keypass nppo1pass -

storepass nppoStore1pass

Once generated, the public key can be uploaded and configured in the HUB Admin Console, with

the following steps:

1) Enter the Admin Console and navigate to the Configuration View

2) Open the certificates screen with the link at the top right

3) Client Certificates are listed (see screenshot below), by using the add button you

can upload the new certificate (The HUB Console will only need the Public Key in a form

of a .cer file). Existing certificates can be only disabled by entering the record, changing

the active flag and saving the information.

HUB Web Service API

Public - FAO/IPPC 7 01-Sep-2023

4.2 Production Environment

HUB Production environment can be accessed from the following URLs:

https://hub.ephytoexchange.org/hub/DeliveryService?wsdl (complete web service with

specialized ePhyto operations)

https://hub.ephytoexchange.org/ hub/DeliveryServiceLight?wsdl (light version of the

web service, without specialized references to ePhyto data structures)

Web service endpoints will accept only certificate authentication when operations are invoked

https://www.ephytoexchange.org/AdminConsole (Admin interface)

4.3 Profile Configuration

By accessing the Admin interface and the view the administrator can manage the

following settings:

- Name of the nppo/entity

- Acronym

- Address

- Batch number of envelopes returned when the PullEnvelope operation is called

- Queue retention (days to wait for the envelope to be expired and removed from the queue)

- Time/Zone to adjust the reported time to the local nppo/entity time

- Receiving Mode (PULL/PUSH) for PUSH additional settings and security amendments are

required (the selection of PUSH is currently disabled as it does require several security changes

and coordination with countries, the use of the PUSH is not recommended)

- Push settings (described below with the PUSH operations)

- Focal Point, name of the person to contact

- Active

- Able to send messages

- Accepting messages (use this to stop others from sending envelopes)

All the settings are visible to other connected nppo/entities.

https://hub.ephytoexchange.org/hub/DeliveryService?wsdl
https://hub.ephytoexchange.org/hub/DeliveryServiceLight?wsdl
https://www.ephytoexchange.org/AdminConsole

HUB Web Service API

Public - FAO/IPPC 8 01-Sep-2023

By following button the administrator can confirm the ability to receive

the specific document types and statuses with the option of deactivating and stopping the receive at the

HUB level.

HUB Web Service API

Public - FAO/IPPC 9 01-Sep-2023

The button will open the screen to upload and maintain the public

certificate key identifying the signature used while signing electronically the XML. This will allow the

receiving country to verify that the incoming signature is matching the one that is published in the HUB

and that is returned in the operation GetActiveNppos.

4.4 Authentication

Authentication to the web service is performed using X509 client certificates on TLS 1.2/1.3

connection.

Each connected application has a defined certificate, that authenticate the client application to

the HUB on the HTTPS/TLS protocol.

Details of the Security implementation are outside the scope of this document but contained in

the referenced HUB requirements document specification.

4ÈÅ (5" ×ÉÌÌ ÏÎÌÙ ÁÃÃÅÐÔ ȬÅÎÖÅÌÏÐÅÓȭ ×ÈÅÒÅ ÔÈÅ Ȭ&ÒÏÍȭ ÆÉÅÌÄ ɉÄÅÓÃÒÉÂÅÄ ÂÅÌÏ×Ɋ ÍÁÔÃÈÅÓ ÔÈÅ client

Certificate of the connecting system.

7ÉÔÈ Ȭ!ÐÒÉÌ ςπςπȭ ÒÅÌÅÁÓÅ ÔÈÅ (5" ÈÁÓ ÂÅÅÎ ÅÎÈÁÎÃÅÄ ÔÏ ÁÌÌÏ× ÃÏÎÎÅÃÔÉÎÇ ÁÎÄ ÓÅÎÄÉÎÇ ÏÎ ÂÅÈÁÌÆ

ÏÆ Á #ÏÕÎÔÒÙȟ ÁÓ ÐÁÒÔ ÏÆ ÔÈÅ Ȭ#ÈÁÎÎÅÌȭ ÆÅÁÔÕÒÅȢ 4ÈÉÓ ÁÌÌÏ×Ó ÔÈÅ (5" ÔÏ ÓÕÐÐÏÒÔ ÃÁÓÅÓ ÓÕÃÈ ÁÓ

European Union Traces system unique connection.

5. HUB XML Schemas

5.1 Schema

The HUB web service schema is composed by a large number of entities, some of them are part of

the ePhyto definition, they will be described more in details in each web service operation. See

below the list of the main elements:

1) Envelope Header

2) Envelope Content

3) ePhyto Envelope

HUB Web Service API

Public - FAO/IPPC 10 01-Sep-2023

The WSDL defined in this document (Section 6) has several operations; mainly supported by the

following entities:

a. Envelope Header

b. Envelope = header + content

c. ePhytoEnvelope = header + SPSCertificate

d. Array of Envelope Header

e. Array of Envelope

f. HUBTrackingInfo

g. NPPO

h. ValidationResult

5.1.1 Envelope Header

The envelope header element is used to exchange information on the ePhyto certificates without

viewing/processing the content of the actual certificate.

The HUB will be instrumented to verify the correct use of such codes and raise communication

errors when such attributes are not complying with the standards. This will be a feature of the

HUB software.

During interaction with the HUB, it is not mandatory to set all the elements within the header.

However, some identified elements are required at the minimum.

 The Envelope header has the following elements:

o From: ISO 3166-1 alpha 2 letter Country Code of the exporting country

o To: ISO 3166-1 alpha 2 letter Country Code of the importing country

o CertificateType : This is the UNECE code for certificate types. For the IPPC implementation,

the HUB will check that the type code corresponds to ones configured as active in the HUB

Admin Console (See above profile configuration)

o CertificateStatus : This is the UNECE code for the status of the certificate. For the IPPC

implementation, the HUB will check that the status code corresponds to ones configured as

active in the HUB Admin Console (See above profile configuration)

o NPPOCertificateNumber : For its own reference, the exporting NPPO can insert the

certificate number of the ePhyto contained with in the envelope, in this field. It will allow the

NPPO national system to match a certificate against the HubTrackingNumber in its own

national system. Furthermore, the HUB user-interface will also display this number along

with the delivery status. This element is multi-lingual; allowing the exporting NPPO to use

any language of their choice. This is limited to 1000 characters.

o HUBTrackingNumber : This is unique identifier that will be assigned by the HUB for each

envelope when it receives the envelope for the first time. The NPPO system can subsequently

query the HUB against this identifier; to get delivery information on any particular certificate

identified by the HUBTrackingNumber. This element size can grow up to 50 characters long.

o HUBTrackingInfo : This element has one of the following four status codes; indicating the

delivery status of the envelope within the HUB:

Á PendingDelivery : implies that the envelope is still held within the HUB and has not

been delivered. Also, the queue expiry period is not over; thus, the HUB still has the

envelope.

HUB Web Service API

Public - FAO/IPPC 11 01-Sep-2023

Á Delivered : The envelope was successfully delivered by the HUB and has been deleted

after delivery

Á FailedDelivery : The HUB has not been able to deliver the envelope and the Queue

expiry period set by the exporting system was reached. Thus, the envelope was deleted

from the HUB queue.

Á EnvelopeNotExists : For the given Tracking Number, the HUB does not have any

information.

Á DeliveredWithWarnings: introduced with March 2018 release it is used to mark

envelopes that are acknowledged from the importing country with some non-

compliancy warnings that can be reported as error text and read from the sending

system to fine tune the generation of a standardized ePhyto XML

Á DeliveredNotReadable: introduced with April 2020 release it is used to mark

envelopes that are received but not readable, due to an XML that is not well-formatted

or that does break the reading procedure at the receiving system.

Á HUBErrorMessage: This element will have messages for different errors that may occur

during interaction with the HUB. Most of the error messages are related to Queue

retention time expiration.

Á The importing country can set the warning messages in the

AdvancedAcknowledge (see operations below) to indicate elements to be

improved in the ePhyto XML they have received.

Á The importing country can set the error message in the

AcknowledgeFailedEnvelopeReceipt (see operations below) to add the

error message that prevented the correct opening of the envelope content

Á Forwardings: From April 2020 release the sender country can specify the list of

channels that the envelope must be forwarded to. It is an optional Array of

EnvelopeForwarding elements that is used during the Delivery operations and returning

the list of forwarded channels with the relative HUB tracking info (see below the Channel

feature described 6.11)

5.1.2 Envelope Content

The envelope type inherits the envelope header and extends it with the ȰContentȱ ÅÌÅÍÅÎÔ that

can be any type of string/ xml.

It is advisable to use UTF-8 as character encoding, in the roadmap of the HUB the header will

contain fields to indicate the characteristic of the content so that connected system will adopt the

relevant conversions. Some countries also support sending and receiving base64 encoding of the

XML.

The electronic phytosanitary certificate will be created by exporting client application, serialized

into XML and sent to the HUB using the Content attribute of the envelope.

The HUB will not perform the validation of the certificate content and its adherence to the ISPM

12 schema. The importing client application will be responsible for opening the certificate content

and ensuring it adheres to the applicable standard. At the receipt of the Envelope the importing

Client Application has to acknowledge the successful receipt of the message, regardless of the

certificate validation that will be performed with a separate business process.

The following reference document contains all the details on the XML mapping requirements and

resources for regular and re-export ePhyto.

HUB Web Service API

Public - FAO/IPPC 12 01-Sep-2023

https://www.ephytoexchange.org/doc/mapping/Mapping_ISPM_12_to_ePhyto_standard_Export_certi

ficate_V.2.pdf

With the June 2021 release the HUB also included the validation and some specialized support for the

importing country responses, following the implementation of the SPSAcknowledgement document,

find below a specific guidance to exchange those document types.

https://www.ephytoexchange.org/doc/mapping/IPPC-ePhyto-SPSAcknowledgement.pdf

5.1.3 Array of EnvelopeHeader

This element is used to exchange a number of envelope headers grouped together. The operations

Ȭ'ÅÔ5ÎÄÅÒ$ÅÌÉÖÅÒÙ%ÎÖÅÌÏÐÅȭ ÁÎÄ Ȭ'ÅÔ)ÍÐÏÒÔ%ÎÖÅÌÏÐÅ(ÅÁÄÅÒÓȭ ÕÓÅ this as described below.

5.1.4 Array of Envelope

This element contains a list of envelopes. Each envelope contains ɀ one header and one ePhyto

certificate. This entity is used in the ÏÐÅÒÁÔÉÏÎ Ȭ05,,)ÍÐÏÒÔ%ÎÖÅÌÏÐÅȭ ÄÅÓÃÒÉÂÅÄ in detail below.

6. Operations

6.1 Connect to the hub

Connecting to the HUB is not an operation exposed by the web service, but the internal call needed

before any invoke of the remote web service operations.

In this section we show the generic code needed to open a client connection with the HUB using

C# and the .Net Framework 4.6.1 and also Java 1.8 and the Apache Axis 1 framework for

generating the client code from the WSDL definition.

The code will create the new client, add the certificate and the URL (depending on the

environment) to be used in all the subsequent calls to the web service.

C#

 private static DeliveryService getClientConnection()

 {

 // the following code is use to prevent security protocol

exceptions

 // raised by using self - signed certificates (test environment)

 ServicePointManager .SecurityProtocol = SecurityProtocolType .Tls11;

 System.Net. ServicePointManager .ServerCertificateValidationCallback

= delegate (

 Object obj, X509Certificate certificate, X509Chain chain,

 SslPolicyErrors errors)

 {

 return (true);

https://www.ephytoexchange.org/doc/mapping/Mapping_ISPM_12_to_ePhyto_standard_Export_certificate_V.2.pdf
https://www.ephytoexchange.org/doc/mapping/Mapping_ISPM_12_to_ePhyto_standard_Export_certificate_V.2.pdf
https://www.ephytoexchange.org/doc/mapping/IPPC-ePhyto-SPSAcknowledgement.pdf

HUB Web Service API

Public - FAO/IPPC 13 01-Sep-2023

 };

 //This is the actual implementation of the generated proxy

 //from the given or downloaded WSDL

 DeliveryService client = new DeliveryService ();

 //setting the test environment URL

 client.Url = "https://uat.ippchub.unicc.org/hub/DeliveryService" ;

 //adding the certificate

 X509Certificate2 cert = new

X509Certificate2 ("/Users/luca/repos/IPPCHubDev/ce rtificates/nppo - it.p12" ,

"nppoITp12");

 client.ClientCertificates.Add(cert);

 //returning the client object

 return client;

 }

Java
 private static final String KEYSTORE_TRUSTED =

"G: \ \ certificates \ \ trustedStore" ;

 private static final String KEYSTORE_TRUSTED_PASSWORD = "changeit" ;

 private static final String KEYSTORE_SERVER =

"G: \ \ certificates \ \ privateStore" ;

 private static final String KEYSTORE_SERVER_PASSWORD = "changeit" ;

 private static IDeliveryServiceProxy getClientConnection() {

 // Configure the stores with certificates

 System. setProperty ("sun.security.ssl.allowUnsafeRenegotiation" ,

"true"); // true for self - signed certificates, false in production

 // Trusted certificates, IPPC HUB certificate should be here

 System. setProperty ("javax.net.ssl.trustStore" , KEYSTORE_TRUSTED);

 System. setProperty ("javax.net.ssl.trustStorePassword" ,

KEYSTORE_TRUSTED_PASSWORD);

 // Private Key store, with NPPO certificate

 System. setProperty ("javax.net.ssl.keyStore" , KEYSTORE_SERVER);

 System. setProperty ("javax.net.ssl.keyStorePassword" ,

KEYSTORE_SERVER_PASSWORD);

 // Uncomment next line to have handshake debug information

 // System.setProperty("javax.net.debug", " ssl ");

 // Getting the proxy to the appropriate URL

 IDeliveryServiceProxy proxy = new IDeliveryServiceProxy("https://uat -

hub.ephytoexchange.org/hub/DeliveryService");

 return proxy ;

 }

6.2 DeliverEnvelope

HUB Web Service API

Public - FAO/IPPC 14 01-Sep-2023

The exporting system will use this operation to send the envelope to the HUB. The Header must

be filled with the following required minimum attributes:

- From,

- To,

- CertificateType,

- CertificateStatus

- NPPO Certiticate Number (is not mandatory but we suggest to use the field to be able to

easily reference each transmission with the original certificate in the exporter system)

- ÁÎÄ ÔÈÅ ȬCÏÎÔÅÎÔȭ ÁÔÔÒÉÂÕÔÅ ÉÓ ÐÏÐÕÌÁÔÅÄ with the actual certificate; to complete the

envelope with the XML serialized version of the generated ePhyto.

The HUB responds back with the EnvelopeHeader ɀ which contains all the attributes populated

by the exporting client application as well as the HUBTrackingNumber and the HUBTrackingInfo

attributes are added by the HUB application.

)Î ÔÈÅ ÃÁÓÅ ÏÆ Ȭ4ÒÁÎÓÉÔȭȟ ×ÈÅÎ ÔÈÅ ÃÅÒÔÉÆÉÃÁÔÅ ÈÁÓ ÔÏ ÂÅ ÄÉÓÔÒÉÂÕÔÅÄ ÔÏ ÔÒÁÎÓÉÔ ÃÏÕÎÔÒÉÅÓ ÔÏÏȟ ÔÈÅ ÃÌÉÅÎÔ

application should send the envelope to all involved countries as separate message and each of

the transmission will be tracked separately.

Client sample implementation in C# generated as .Net 2.0 standard web service client:

https://docs.microsoft.com/en -us/dotnet/framework/wcf/feature -details/transport -security-

with -certificate-authentication

C#

 // initialize the client

 DeliveryService client = getClientConnection();

 // simulating an Issue certificate from Italy to United States

 Envelope env = new Envelope ()

 {

 From = "IT" ,

 To = "US" ,

 CertificateType = 851 ,

 CertificateStatus = 70,

 NPPOCertificateNumber = "Internal NPPO Certificate Number"

 };

 //l oad the actual electronic certificate XML

 var ePhyto = new System.Xml. XmlDocument ();

 ePhyto.LoadXml("<?xml version= \ "1.0 \ " encoding= \ "UTF-

8\ "?><ephyto><contents/></ephyto>");

 //set the XML to the content element of the message

 env.Content = ePhyto.InnerXml;

 try

 {

 // send the message to the hub and get back the header

 EnvelopeHeader header = client.DeliverEnvelope(env);

 //handle interna l issues

https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/transport-security-with-certificate-authentication
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/transport-security-with-certificate-authentication

HUB Web Service API

Public - FAO/IPPC 15 01-Sep-2023

 if (header.HUBTrackingInfo == "FailedDelivery")

 {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 //Header Validation error (certificate, destination

country not boarded...)

 //Internal error of the system

 //get the error message

 string error = header.hubDeliveryErrorMessage;

 System. Console .WriteLine("Message failed delivery,

" +error);

 }

 else

 {

 //get the hub tracking number...

 str ing hubTrackingNumber = header.hubDeliveryNumber;

 System. Console .Write("header delivered with tracking

number : " + hubTrackingNumber);

 //persist the header details to record that the message

is under delivery

 }

 } catch (Exception ex){

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 //Header Validation error (certificate, destin ation country

not boarded...)

 //network

 //unavailability of the remote system

 Console .WriteLine("Failed to deiver the message to the HUB"

+ ex.Message);

 }

Java
 private static EnvelopeHeader DeliverEnvelope() throws HubClientException

{

 IDeliveryServiceProxy proxy = getClientConnection ();

 DocumentBuilderFactory dbFactory =

DocumentBuilderFactory. newInstance ();

 // Envelope creation, from Italy to United States

 Envelope envelope = new Envelope();

 envelope .setFrom("IT");

 envelope .setTo("US");

 envelope .setCertificateType(851);

 envelope .setCertificateStatus(70);

 envelope .setNPPOCertificateNumber("EPHYTO- IT - 2017 - 0010277");

 try {

 DocumentBuilder dBuilder = dbFactory .newDocumentBuilder();

 Document doc = dBuilder .parse("<?xml version= \ "1.0 \ " encoding= \ "UTF-

8\ "?><ephyto><contents/></ephyto>");

HUB Web Service API

Public - FAO/IPPC 16 01-Sep-2023

 DOMSource domSource = new DOMSource(doc);

 StringWriter writer = new StringWriter();

 StreamResult result = new StreamResult(writer);

 TransformerFactory tf = TransformerFactory. newInstance ();

 Transformer transformer = tf .newTransformer();

 transformer .transform(domSource , result);

 envelope .setContent(writer .toString());

 } catch (SAXException | IOException | ParserConfigurationException |

TransformerException e1) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 //The XML string could not be parsed

 System. out .println("Failed to load certificateinto XML document.");

 throw new HubClientException(e1); // Without certificate we cannot

continue

 }

 try {

 // send the message to the hub and get back the header

 EnvelopeHeader header = proxy .deliverEnvelope(envelope);

 // Handle internal issues

 if (header .getHUBTrackingInfo().equals("FailedDelivery")) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the follo wing

 //Header validation error

 String error = header .getHubDeliveryErrorMessage();

 System. out .println(String. format ("Message failed delivery. %s" ,

error));

 } else {

 //get the hub tracking number...

 String hubTrackingNumber = header .getHubDeliveryNumber();

 System. out .println(String. format ("Header delivered with tracking

number: %s" , hubTrackingNumber));

 }

 return header ;

 } catch (RemoteException e) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 // network

 // unavailability of the remote system

 System. out .println(String. format ("Failed to deliver the message to

the HUB. " , e.getMessage()));

 throw new HubClientException(e);

 }

 }

If any error occurs, the HUBTrackingIÎÆÏ ÉÓ ÓÅÔ ÔÏ Ȱ&ÁÉÌÅÄ$ÅÌÉÖÅÒÙȱ ÁÎÄ ÔÈÅ ÄÅÔÁÉÌÓ ×ÉÌÌ ÂÅ ÆÏÕÎÄ

in the hubDeliveryErrorMessage element of the Envelope Header returned. Possible errors

detected include:

¶ The connected system cannot send with the specified Ȱ&ÒÏÍȱ ÆÉÅÌÄ

¶ There is no system connected to receive for the country specified ÉÎ ÔÈÅ Ȱ4Ïȱ ÆÉÅÌÄ

¶ Invalid certificate type

¶ Invalid certificate status

Connectivity issues such as network outages or unavailability of the system will be reported

as standard HTTP protocol errors, as they are not generated by the remote application.

HUB Web Service API

Public - FAO/IPPC 17 01-Sep-2023

6.3 PULLImportEnve lope, AcknowledgeEnvelopeReceipt ,

AdvancedAcknowledgeEnvelopeReceipt ,

AcknowledgeFailedEnvelopeReceipt

The importing system configured for PULL operation will use this operation to retrieve all the

envelopes that are destined for them. The authenticated client is representing the importing

country and it will receive all of the envelopes (array of envelope) that ÁÒÅ ÉÎ ÔÈÅ (5"ȭÓ ÑÕÅÕÅ

with the importing country in the ȰToȱ field. For each of these envelopes, the importing country

should message back on the operation AckknowledgeEnvelopeReceipt the successful receipt of

each envelope; with the HUBTrackingNumber.

Acknowledged messages will be removed from the queue and the next pull operation will fetch

the remaining messages until the result is empty.

The system configuration will allow for reducing the batch of the messages of each pull in order

to fine tune the communication with office using a poor connection.

The system supports an additional text message with the acknowledge operation that will set the

tracking info to DeliveredWithWarnings and can provide with the error message the details of

the issues found during the receiving and opening of the XML.

Please note that the warning message is limited to 200 characters, the return message may

indicate such warning, the data will be truncated in case exceeds such limit.

See sample below, such messages can be extracted from a schema validation action performed by

the receiver and reported back to the sender to leverage the XML standardization and codes

harmonization.

Similar to the above if the envelope content is not readable the receiving system can use the

AcknowledgeFailedEnvelopeReceipt to communicate that there was an error in opening the

envelope and use the message of 200 characters to add the error text or reason of the failure.

Client sample implementation:

C#

 // initialize the client

 DeliveryService client = getClientConnection();

 //get all the envelopes pending delivery

 Envelope [] envelopesToImport = client.PULLImportEnvelope();

 foreach (Envelope env in envelopesToImport)

 {

 System. Console .WriteLine("Processing hub delivery number : "

+env.hubDeliveryNumber);

 try

 {

 //get the content containing the certificate XML

 String xmlContent = env.Content;

 //verifications in xml

HUB Web Service API

Public - FAO/IPPC 18 01-Sep-2023

 var ePhyto = new System.Xml. XmlDocument ();

 ePhyto.LoadXml(xmlContent);

 //save the ePhyto to the client application

 //acknowledge the receipt back to the server (this could be

done as separate action based on user validation ??)

 client.AcknowledgeEnvelopeReceipt(env.hubDeliveryNumber);

 // perform schema/xml checks

 client. Advanced AcknowledgeEnvelopeReceipt(env.hubDeliveryNumber ,

ñplease indicate the date elements without millisecondsò);

 }

 catch (Exception ex)

 {

 //handle the content parsing error

 System.Console.WriteLine(String.Format("error when parsing

content of {0} {1}" , env.hubDeliveryNumber,ex.Message));

 }

 }

Java
 private static void pullAcknowledge() throws HubClientException {

 IDeliveryServiceProxy proxy = getClientConnection ();

 try {

 // get all the envelopes pending delivery

 Envelope[] envelopesToImport = proxy .PULLImportEnvelope();

 for (Envelope envelope : envelopesToImport) {

 System. out .println(String. format ("Processing hub delivery number:

%s", envelope .getHubDeliveryNumber()));

 // get the content containing the certificate XML

 String xmlContent = envelope .getContent();

 // verifications in XML

 DocumentBuilderFactory dbFactory =

DocumentBuilderFactory. newInstance ();

 DocumentBuilder dBuilder ;

 try {

 dBuilder = dbFactory .newDocumentBuilder();

 InputStream content = new

ByteArrayInputStream(envelope .getContent().getBytes(StandardCharsets. UTF_8.

name()));

 Document doc = dBuilder .parse(content);

 } catch (ParserConfigurationException | SAXException | IOException

e) {

 // The content of the envelope is not a proper XML file

 System. out .println(String. format ("Error parsing content of %1$s

%2$s" , envelope .getHubDeliveryNumber(), e.getMessage()));

 // This envelope won't be acknowledged

HUB Web Service API

Public - FAO/IPPC 19 01-Sep-2023

proxy .advancedAcknowledgeEnvelopeReceipt(envelope .getHubDeliveryNumber(),

ñerror while parsing the XMLò);

 continue ;

 }

 //acknowledge the receipt back to the server (this could be done as

a separate action based on user validation)

 proxy .acknowledgeEnvelopeReceipt(envelope .getHubDeliveryNumber());

 }

 } catch (RemoteException e) {

 //mana ge the exception and provide errors to the client

 //in this case the error is due to one of the following

 // network

 // unavailability of the remote system

 System. out .println(String. format ("Failed to deliver the message to

the HUB. " , e.getMessage()));

 throw new HubClientException(e);

 }

 }

If an error occurs in the processing of PullImportEnvelope, AckowledgeEnvelopeReceipt,

AcknowledgeFailedEnvelopeReceipt or AdvancedAckowledgeEnvelopeReceipt, a standard SOAP

Fault element will be sent describing the error. Errors detected in these services include:

¶ The system making the request is not in the system

¶ The acknowledge of receipt rÅÑÕÅÓÔÅÒ ÉÓÎȭÔ ÆÒÏÍ ÔÈÅ entity ÉÎ ÔÈÅ Ȱ4Ïȱ field of the

acknowledged header

¶ Envelope not found, as above related to acknowledge request. When the sent number is

not found in the HUB.

6.4 GetUnderDeliveryEnvelope

The operation allows the exporting system to get a list of all the envelope headers that are in the

delivery process (i.e. with HUBDeliveryStatus as PendingDelivery). The authenticated client

represents the exporting system. The HUB will return the list of all the envelopes that are pending

delivery (array of EnvelopeHeader).

The client application can use the HUBTrackingNumber from the returned envelope headers and

updates the system.

Client sample implementation.

C#

DeliveryService client = getClientConnection();

 try

 {

 //get the envelopes under delivery (received by the HUB and

queued to be delivered to the destination)

 EnvelopeHeader [] headers = client.GetUnderDeliveryEnvelope();

 //cicles the records to update the client system

 foreach (var head in headers)

HUB Web Service API

Public - FAO/IPPC 20 01-Sep-2023

 {

 //updates the client records

System. Console .WriteLine("Env:" +head.hubDeliveryNumber+ ",Tracking

Info:" +head.HUBTrackingInfo);

 }

 }

 catch (Exception ex)

 {

 System. Console .WriteLine(ex.Message);

 }

Java
 private static void getUnderDeliveryEnvelope() throws HubClientException

{

 IDeliveryServiceProxy proxy = getClientConnection ();

 try {

 // get the envelopes under delivery

 EnvelopeHeader[] headers = proxy .getUnderDeliveryEnvelope();

 // clicles the records to update the client system

 for (EnvelopeHeader header : headers) {

 // updates client records

 System. out .println(String. format ("Envelope: %1$s - Tracking info:

%2$s" , header .getHubDeliveryNumber(), header .getHUBTrackingInfo()));

 }

 } catch (RemoteException e) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 // network

 // unavailability of the remote system

 System. out .println(String. format ("Failed to deliver the message to

the HUB. " , e.getMessage())) ;

 throw new HubClientException(e);

 }

 }

 If an error occurs in the processing of GetUnderDeliveryEnvelope a standard SOAP Fault

element will be sent describing the error. Errors detected in this service include:

¶ The system making the request is not in the HUB

6.5 GetImport EnvelopeHeaders & PULLSingleImportEnvelope

Similar, to the previous this operation allows the importing system to get a list of all the envelope

headers that are in the delivery process. The authenticated client represents the importing

country. The HUB will return the list of all the envelopes that are pending delivery (array of

EnvelopeHeader).

The client application can use the HUBTrackingNumber from the returned envelope headers and

pull each of them one by one. This will allow the importing country to work on the entire subset

of messages to be delivered, rather than having to pull them in batches.

HUB Web Service API

Public - FAO/IPPC 21 01-Sep-2023

Additionally, by using the optional countryCode parameter the importing country can specify to

retrieve only the list of headers of an exporting country and apply the required logic to the import

procedures.

Client sample implementation.

C#

DeliveryService client = getClientConnection();

 try

 {

 //get the envelopes under delivery (received by the HUB and

queued to be delivered to the destination) use null or a country code to

retrive all or only for a specific sending country

 EnvelopeHeader [] headers = client.Get Import Envelope Headers ();

 //cicles the records to update the client system

 foreach (var head in headers)

 {

 Envelope env =

client.PULL Single ImportEnvelope(head.hubDeliveryNumber);

 //get the content containing the certificate XML

 String xmlContent = env.Content;

 //verifications in xml

 var ePhyto = new System.Xml. XmlDocument ();

 ePhyto.LoadXml(xmlContent);

 //save the ePhyto to the client application

 //acknowledge the receipt back to the server (this could be

done as separate action based on user validation ??)

 client.AcknowledgeEnvelopeReceipt(env.hubDeliveryNumber);

 // perform schema/xml checks

client. Advanced AcknowledgeEnvelopeReceipt(env.hubDeliveryNumber , ñplease

indicate the date elements without millisecondsò);

 }

 }

 catch (Exception ex)

 {

 System. Console .WriteLine(ex.Message);

 }

Java
 private static void get Import Envelope Headers () throws HubClientException

{

 IDeliveryServiceProxy proxy = getClientConnection ();

HUB Web Service API

Public - FAO/IPPC 22 01-Sep-2023

 try {

 // get the envelopes under delivery

 EnvelopeHeader[] headers = proxy . getImportEnvelopeHeaders (ñITò);

 // clicles the records to update the client system

 for (EnvelopeHeader header : headers) {

 // get the envelope

 Envelope env = proxy .PULLSingleImportEnvelope(header .

getHubDeliveryNumber());

 // get the content containing the certificate XML

 String xmlContent = env .getContent();

 // verifications in XML

 DocumentBuilderFactory dbFactory =

DocumentBuilderFactory. newInstance ();

 DocumentBuilder dBuilder ;

 try {

 dBuilder = dbFactory .newDocumentBuilder();

 InputStream content = new

ByteArrayInputStream(env .getContent().getBytes(StandardCharsets. UTF_8.name(

)));

 Document doc = dBuilder .parse(content);

 } catch (ParserConfigurationException | SAXException | IOException

e) {

 // The content of the envelope is not a proper XML file

 System. out .println(String. format ("Error parsing content of %1$s

%2$s" , env .getHubDeliveryNumber(), e.getMessage()));

 // This envelope won't be acknowledged

proxy .advancedAcknowledgeEnvelopeReceipt(env.getHubDeliveryNumber(), ñerror

while parsing the XMLò);

 continue ;

 }

 //acknowledge the receipt back to the server (this could be done as

a separate action based on user validation)

 proxy .acknowledgeEnvelopeReceipt(env .getHubDeliveryNumber());

 }

 } catch (RemoteException e) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 // network

 // unavailability of the remote system

 System. out .println(String. format ("Failed to pull envelopes from the

HUB. " , e.getMessage())) ;

 throw new HubClientException(e);

 }

 }

 If an error occurs in the processing of GetImport EnvelopeHeader,

AcknowledgeEnvelopeReceipt and AdvanvcedAcknowledgeEnvelopeReceipt a standard SOAP

Fault element will be sent describing the error. Errors detected in this service include:

¶ The system making the request is not in the HUB

HUB Web Service API

Public - FAO/IPPC 23 01-Sep-2023

6.6 GetEnvelopeTrackingInfo

This operation provides the HUBTrackingInfo for a given HUBTrackingNumber, one envelope at

a time. The idea is that if the client application has sent the envelope and the envelope header is

not listed in the pending delivery, then the system should query the hub to understand if it was

delivered successfully and/or at which stage it is. In the code example below, you can find a

possible implementation of a recurring process that takes actions in the National System based

on each of the tracking info.

C#

DeliveryService client = getClientConnection();

 try

 {

 EnvelopeHeader head= client.GetEnvelopeTrackingInfo(num);

 System. Console .WriteLine(string .Format("The envelope {0}

tracking info is {1}" ,head.hubDeliveryNumber,head.HUBTrackingInfo));

 switch (head.HUBTrackingInfo){

 case "Delivered" :

 //perform client updates to mark the envelope

delivered

 break ;

 case "Delivered WithWarnings " :

 //perform client updates to mark the envelope

delivered , capture the text and send the information to technical people

 break ;

 case "FailedDelivery" :

 string error = head.hubDeliveryErrorMessage;

 //update the client state with the informational

error message

 break ;

 case "EnvelopeNotExists" :

 //the message was received by the hub but not yet

added to the queue or the number is not correct

 //resending of the original can be applied

 break ;

 case "PendingDelivery" :

 //still in the queue on the hub, waiting to be

pulled or pushed

 break ;

 }

 }

 catch (Exception ex)

 {

 System. Console .WriteLine(ex.Message);

 }

Java

 private static void getEnvelopeTrackingInfo(String hubTrackingNumber)

throws HubClientException {

HUB Web Service API

Public - FAO/IPPC 24 01-Sep-2023

 IDeliveryServiceProxy proxy = getClientConnection ();

 try {

 EnvelopeHeader header =

proxy .getEnvelopeTrackingInfo(hubTrackingNumber);

 System. out .println(String. format ("The envelope %1$s tracking info is

%2$s" , header .getHubDeliveryNumber(), header .getHUBTrackingInfo()));

 switch (header .getHUBTrackingInfo()) {

 case "Delivered" :

 // perform client updates to mark the envelope as delivered

 break ;

 case "DeliveredWithWarnings" :

 // perform client updates to mark the envelope as delivered,

capture the error message and send it to the technical people

 break ;

 case "FailedDelivery" :

 String errorMessage = header .getHubDeliveryErrorMessage();

 // update the client state with the informational error message

 break ;

 case "EnvelopeNotExists" :

 //the message was received by the hub but not yet added to the

queue or the number is not correct

 // resending of the original can be applied

 break ;

 case "PendingDelivery" :

 //still in the queue on the hub, waiting to be pulled or pushed

 break ;

 }

 } catch (RemoteException e) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 // network

 // unavailability of the remote system

 System. out .println(String. format ("Failed to deliver the message to

the HUB. " , e.getMessage()));

 throw new HubClientException(e);

 }

 }

If an error occurs, the error will be returned as SOAP exception. Possible errors detected include:

¶ The system making the request is not in the HUB

¶ The requester is not authorized to use the specified Ȱ&ÒÏÍȱ ÆÉÅÌÄ

6.7 GetActiveNppos

This operation is a simple query that return all the active Country entities of the HUB, with only

the Country code, the Send and Receive flags. Such flags may be used by a client application to

automate the sending or receiving from the relevant country depending on their status on the

HUB.

This operation can be used to automatically verify that a country is configured and ready to

receive or send ePhyto(s), the list of allowed documents and published signature (see below

sample XML returned)

HUB Web Service API

Public - FAO/IPPC 25 01-Sep-2023

<ns3:Nppo>

 <ns3:Country>00</ns3:Country>

 <ns3:Receive>true</ns3:Receive>

 <ns3:Send>true</ns3:Send>

 <ns3:AllowedDcoument active="true">

 <certificateType number="657" value="Re-Export Phyto"/>

 <certificateStatus number="40" value="Withdrawn"/>

 </ns3:AllowedDcoument>

 <ns3:AllowedDcoument active="true">

 <certificateType number="851" value="Phyto"/>

 <certificateStatus number="40" value="Withdrawn"/>

 </ns3:AllowedDcoument>

 é

 <ns3:Signature>

 <dn>é</dn>

 <certificate>é</certificate>

 </ns3:Signature>

</ns3:Nppo>

6.8 ValidatePhytoXML

This operation is exposing the functionality of the AdminConsole for validating the XML against the

latest ePhyto schema (based on the UN/CEFACT version 17A).

This can be used to collect and warn issues on incoming as well as outgoing messages.

When used from SoapUI, it is suggested to wrap the XML to validate into a <![CDATA[é.]]> element

to be able to copy paste the source text as it is.

Code examples are not provided here as they are just a different operation call from the ones described

above. The result of the operation will return an array of validation results like the following

<ns3:ValidatePhytoXMLResult>

 <area>MandatoryElements</area>

 <field>SPSExchangedDocument.IssueDateTime.DateTimeString</field>

 <level>SEVERE</level>

 <msg>Issue date is mandatory field</msg>

</ns3:ValidatePhytoXMLResult>

The field indicate the source element of the issue, the msg indicates a descriptive message of the issue.

Possible Areas are the following:

- MandatoryElements (elements that must be there as part of the document structure)

- Mapping (issues related to the mapping of the ePhyto to the schema)

- Schema (issues related to non-compliances to the XML schema)

Possible Levels are the following:

HUB Web Service API

Public - FAO/IPPC 26 01-Sep-2023

- SEVERE: lead to issues in reading and visualizing the certificate

- WARNING: not leading to issues, may need some revision on how the XML is produced

- INFO: optimization level changes may be applied

6.9 DeliverPhytoEnvelope

This operation is exposing a new entity in the HUB, the ePhytoEnvelope that is inherited from the

EnvelopeHeader and instead of having a String Content element, as defined in the Envelope, has the

SPSCertificate defined with the schema used by the validation tool (based on the UN/CEFACT).

The operation, similarly to the DeliverEnvelope, will require all the information as defined above and

a valid SPSCertificate entity defined. The operation before queuing the content for the delivery will

perform a validation and if any SEVERE level issues are found, it will stop the delivery.

Usage of this operation is following exactly the same workflow as defined for DeliverEnvelope and it

may leverage the client application from compiling the XML, in actually filling in the required

information from the existing entities defined in the exporter application.

The sample code here is similar to the one defined above for the DeliveryEnvelope operation. Instead

of setting an XML in the content, the entire SPSCertificate object should be filled, depending on the

available information (such scenario may vary depending on how the system is implemented to fulfill

dynamically the various phytosanitary information).

This operation is suggested for National Systems that do not have yet the transformation to XML and

can immediately map the internal information to the standardized SPSCertificate that is exposed in the

web service and available in the client software.

6.10 DeliverCountryResponseEnvelope

Like the above DeliverPhytoEnvelope this operation does expose a strongly typed operation, exposing

a new entity in the HUB, the CountryResponseEnvelope with the SPSAcknowledgement (based on the

UN/CEFACT) defined as content.

6.11 GetAvailableChannels

This operation is a simple query that return all the active Channels registered in the HUB, with

the code, the name, the Send and Receive flags. Similarly, to the GetActiveNppos the

receive/send flags are indicative of the capabilities of the connected system.

6.12 DeliverEnvelope (with channel forwarding)

The channel codes can be used in all the delivery operations to forward the envelope to systems

that are not destination or transit country systems, see XML sample below of an envelope

header with a forwarding channel:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:eph="http://ephyto.ippc.int/"

xmlns:hub="http://ephyto.ippc.int/HUB.Entities">

 <soapenv:Header/>

 <soapenv:Body>

 <eph:DeliverEnvelope>

 <eph:env>

HUB Web Service API

Public - FAO/IPPC 27 01-Sep-2023

 <hub:From>AR</hub:From>

 <hub:To>US</hub:To>

 <hub:CertificateType>851</hub:CertificateType>

 <hub:CertificateStatus>70</hub:CertificateStatus>

 <hub:NPPOCertificateNumber>é</hub:NPPOCertificateNumber>

 <hub:Forwardings>

 <hub:EnvelopeForwarding>

 <hub:Code>xCB01</hub:Code>

 </hub:EnvelopeForwarding>

 </hub:Forwardings>

 <hub:Content><![CDATA[<?xml é]></hub:Content>

 </eph:env>

 </eph:DeliverEnvelope>

 </soapenv:Body>

</soapenv:Envelope>

In the example above the code xCB01 represent an existing channel.

The result from the HUB will be similar to the following:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ns2:DeliverEnvelopeResponse xmlns:ns2="http://ephyto.ippc.int/" xmlns:ns3="http://ephyto.ippc.int/HUB.Entities"

xmlns:ns4="urn:un:unece:uncefact:data:standard:ReusableAggregateBusinessInformationEntity:21"
xmlns:ns5="urn:un:unece:uncefact:data:standard:UnqualifiedDataType:21"

xmlns:ns6="urn:un:unece:uncefact:data:standard:SPSCertificate:17">

 <ns2:DeliverEnvelopeResult xsi:type="ns3:Envelope" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <ns3:From>AR</ns3:From>

 <ns3:To>US</ns3:To>

 <ns3:CertificateType>851</ns3:CertificateType>

 <ns3:CertificateStatus>70</ns3:CertificateStatus>

 <ns3:NPPOCertificateNumber>é</ns3:NPPOCertificateNumber>

 <ns3:hubDeliveryNumber>ARUSM2004270738011959481</ns3:hubDeliveryNumber>

 <ns3:Forwardings>

 <ns3:EnvelopeForwarding>

 <ns3:Code>xCB01</ns3:Code>

 <ns3:HubDeliveryNumber>ARxCB01M2004270738011955240</ns3:HubDeliveryNumber>

 </ns3:EnvelopeForwarding>

 </ns3:Forwardings>

 </ns2:DeliverEnvelopeResult>

 </ns2:DeliverEnvelopeResponse>

 </soap:Body>

</soap:Envelope>

The envelope will be then delivered in parallel to the system of the channel entity in the same way as it

is delivered to the receiving country.

6.13 ValidateAndDeliverEnvelope

This operation can be use exactly in the same way DeliverEnvelope is called. It will parse the content

and validate the XML before queuing it for delivery to the destination.

6.14 GetProfile

HUB Web Service API

Public - FAO/IPPC 28 01-Sep-2023

This operation can be used to get programmatically the current HUB configuration associated to the

authentication certificate in use.

6.15 Receiving a PUSH delivery

In order to receive a PUSH delivery, the receiving system must have an endpoint ready for the HUB to

connect.

The system must use the HUB WSDL file in order to generate the needed sources, and develop the

needed functionalities to receive in the DeliveryEnvelope operation the envelopes and confirm the

receipt using the acknowledge HUB operations (acknowledgeEnvelopeReceipt and

advancedAcknowledgeEnvelopeReceipt) described above with the corresponding PULL

delivery operations.

If there is an error and the PUSH endpoint application wants to receive again the envelope the end-point

result shoud have a envelope header with the tracking info set as FailedDelivery (the HUB in this case

will continue to try and send the envelope until it is acknowledged or the answer from the enpoint is

successful). If no FailedDelivery is responded to the HUB, the system will lock the envelope waiting

for the acknowledge.

The system administrator will need to communicate (using the support request described above) the IP

ranges that are hosting the PUSH web service endpoint. After the opening of the ports on the HUB the

system administrator will receive a confirmation email with the SSL client certificate used by the HUB

to authenticate.

Additionally, the HUB connection profile can be configured to Receive Tracking Info Update via

PUSH. This will mean that the HUB will send the envelope header to the operation

SetTrackingInfoUpdate on the changing of the tracking info, from pending delivery to any of the final

delivery or failure state.

See below NPPO settings related to the PUSH receiving mode.

Here below a sample on how to create a basic endpoint using Eclipse and Apache Axis.

First, create a new Dynamic Web project in Eclipse (here we use JBoss as target runtime, please use the

runtime that best suit your needs)

HUB Web Service API

Public - FAO/IPPC 29 01-Sep-2023

You can click ñFinishò in this dialog.

Once the project is there (skip the project creation if you want to implement the service into an existing

project), you will need to create the classes implementing the web service interface. For this, we will

add a new Web Service to the project by right clicking the project name and then ñnewò and ñOtheréò

HUB Web Service API

Public - FAO/IPPC 30 01-Sep-2023

Select ñWeb Serviceò and click ñNextò

HUB Web Service API

Public - FAO/IPPC 31 01-Sep-2023

As we already have the WSDL file, select ñTop down Java bean Web Serviceò

After that enter the Hub WSDL URL address in the service definition:

https://hub.ephytoexchange.org/hub/DeliveryService?wsdl

We will use ñApache Axisò and JBoss as our server for the deployment. If you have a different

Application Server, just select it by clicking in the ñServer runtimeò link. Make sure that the Application

Server is running and click ñFinishò.

When the process finishes, Eclipse will open the file: DeliveryServiceSoapBindingImpl.java this is

where the code has to be completed. In this case, we only need to implement the ñdeliverEnvelopeò

method, which is the one that will be called by the PUSH service in the HUB.

Java

https://hub.ephytoexchange.org/hub/DeliveryService?wsdl

HUB Web Service API

Public - FAO/IPPC 32 01-Sep-2023

 public _int.ippc.ephyto.HUB_Entities.EnvelopeHeader

deliverEnvelope(_int.ippc.ephyto.HUB_Entities.Envelope env) throws

java.rmi.RemoteException, _int.ippc.ephyto.HubWebException {

 saveEnvelope(env);

 return env ;

 }

 private void saveEnvelope(_int.ippc.ephyto.HUB_Entities.Envelope env) {

 // do checks and store the envelope in the suitable place

 // acknowledge the reception

 HubClient. acknowledge (env);

 }

Save the envelope and then acknowledge the reception of the envelope to the HUB so it can be marked

as delivered.

Note that the HubClient is referring to the object implementing the connection to the HUB web services.

In the example above we do not provide guidelines on how to setup the client certificate authentication

as it may vary considerably depending on the underlying platform and infrastructure. To implement the

push endpoint the receiving system should accept the provided HUB certificate for the client

authentication (the client certificate will be provided with the response of the opening of the required

ports to the country hosting IP ranges).

HUB Web Service API

Public - FAO/IPPC 33 01-Sep-2023

7. Sequence Diagrams

7.1 Deliver with PULL (Basic Flow)

Following a sequence diagram defining the basic delivery process with the minimal interactions

between the client applications and the HUB.

HUB Web Service API

Public - FAO/IPPC 34 01-Sep-2023

7.2 Deliver with PULL (Advanced Flow)

The following sequence of interaction is recommended and using the latest developments of the HUB

to support the validation of the content and the optimization of the receiving process.

7.3 Deliver with PUSH

Following a sequence diagram defining the delivery process interactions between the client

applications and the HUB using the PUSH receiving type.

The use of the PUSH model is not recommended due to the low benefits compared to the required

management costs.

HUB Web Service API

Public - FAO/IPPC 35 01-Sep-2023

8. Testing with Soap UI

Please follow the next steps in order to test with SOAPUI:

1. Download and installs SOAP UI. We are using version 5.7.1
2. Go to the Installation folder bin directory and open the file SOAPUI-5.7.1.vmoptions. On

windows machinesȟ ÔÈÅ ÆÉÌÅ ÉÓ ÌÏÃÁÔÅÄ ÉÎ Ȱ#ȡ\ Program Files\ SmartBear\ SoapUI-
5.7.1\ÂÉÎȱ, on Mac is under the /Applications/SoapUI-
5.7.1.app/Contents/vmoptions.txt . You have to edit this file with Administrator rights.

3. Save the file and open or reopen SOAP UI.
4. Go to File New SOAP Project.
5.)Î Ȱ0ÒÏÊÅÃÔ .ÁÍÅȱ ÆÉÅÌÄȟ ÃÈÏÏÓÅ Á ÄÅÓÃÒÉÐÔÉÖÅ ÐÒÏÊÅÃÔ ÎÁÍÅȢ
6.)Î Ȱ)ÎÉÔÉÁÌ 73$,ȱ ÆÉÅÌÄȟ ÃÈÏose the provided URL for the endpoint (this URL should finish
ÉÎ Ȱȩ×ÓÄÌȱɊȟ ÏÒ ÃÈÏÏÓÅ ÔÈÅ ×ÓÄÌ ÆÉÌÅȟ ÉÆ ÙÏÕ ÒÅÃÅÉÖÅÄ ÔÈÅ ÆÉÌÅ ÏÒ ÙÏÕ ÓÁÖÅÄ ÔÈÅ ×ÓÄÌ ÆÉÌÅ ÉÎ
your computer.

7. After clicking OK, SOAP UI will generate some templates with the operation requests.
Here you can see an example of this generated template requests:

